Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jallcom

Journal of Alloys and Compounds

New quaternary sulfides in the AE-RE-Sn-S system (AE = alkaline-earth, RE = rare earth)

Hui-Yi Zeng, Zhong-Yan Zhao, Sheng-Ping Guo, Fa-Kun Zheng, Guo-Cong Guo*, Jin-Shun Huang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People's Republic of China

ARTICLE INFO

Article history: Received 7 September 2011 Received in revised form 2 November 2011 Accepted 5 November 2011 Available online 15 November 2011

Keywords: Non-centrosymmetric Rare earth Sulfide Crystal structure Band gap

ABSTRACT

In our investigation of rare earth sulfides in the AE-RE-Sn-S (AE = alkaline-earth, RE = rare earth) system, three isostructural quaternary sulfides have been obtained. These compounds adopt the $Eu_5Zr_3S_{12}$ structure type and crystallize in the *P*-62*m* space group (no. 189); the crystal data are as follows: $Sr_2Y_{2.67}Sn_3S_{12}$, a = 11.600(7)Å, c = 3.948(3)Å, Z = 1; $Ca_3La_2Sn_3S_{12}$, a = 11.5997(6)Å, c = 3.9407(4)Å, Z = 1; $Ca_3Er_2Sn_3S_{12}$, a = 11.448(3)Å, c = 3.8780(11)Å, Z = 1. Single-crystal analysis indicated that the crystal structures consist of three types of building block: RES₇, AES₆, and SnS₆ units. The structure of $Sr_2Y_{2.67}Sn_3S_{12}$ is charac-

terized by the ∞ [Y₃S(1)_{12/2}S(2)₃S(3)₃] trimer-chains along the *c* direction, which are connected into a 3-dimensional framework by the Sn atoms via S(1), S(2), and S(3), with Sr atoms filling in the channels along the *c* direction. The optical band gap of 1.45 eV for Ca₃La₂Sn₃S₁₂ was deduced from the diffuse reflectance spectrum.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Research on rare earth chalcogenides has been an active area of solid state chemistry due to their rich structural chemistry and various interesting physical properties [1–5]. Although many alkaline-earth rare earth ternary chalcogenides [6–32] and a few rare earth tin ternary ones [33–40] have been reported, nothing is known so far about the AE-RE-Sn-Q (AE = alkaline-earth, RE = rare earth; Q = S, Se, Te) system. In our investigation of non-centrosymmetric rare earth sulfides in the AE-RE-Sn-S (AE = alkaline-earth, RE = rare earth) system, three quaternary sulfides have been obtained. Here we present the synthesis, crystal structure of Sr₂Y_{2.67}Sn₃S₁₂ and AE₂(RE_{3-x}AE_x)Sn₃S₁₂ (AE = Ca/La, RE = Ca/La, x = 0; AE = Ca, RE = Er, x = 1), and the experimental band gap of Ca₃La₂Sn₃S₁₂.

2. Experimental

2.1. Synthesis

All starting materials were used as received: CaS (99.5%, Alfa), SrS (99.9%, Alfa), La₂S₃ (99.5%, Alfa), Er₂S₃ (99.5%, Alfa), SnS₂ (99.5%, Alfa), Sn (99.999%, Sinopharm Chemical Reagent Co., SCRC), S (99.999%, SCRC), Y (99.5%, Jin-Rui Rare Earth Co.), La (99.5%, Jin-Rui Rare Earth Co.), and KBr (99.9%, SCRC). Single crystals were obtained via a precursors/flux method. Appropriate starting materials were mixed together and ground thoroughly within a nitrogen-filled glovebox, pressed into pellets, and then sealed in evacuated fused silica ampoules. The ampoules were then put in resistance furnaces and heated slowly to 950–1000 °C, kept at this temperature for 100–316 h (for details, see Table 1) with one intermediate grinding and re-pressing of the materials. The products obtained from this procedure were mixed with fluxes (for details, see Table 2). Upon regrinding, and resealing, the precursor/flux mixtures were heated at 850–900 °C for 200–240 h, then slowly cooled to 550–600 °C, and finally to room temperature by switching off the furnace powers. Black crystals of Sr₂Y_{2.67}Sn₃S₁₂ and Ca₃Er₂Sn₃S₁₂ as major product were isolated manually from the residues after the fluxes were removed by washing with distilled water. These compounds are stable in air.

2.2. X-ray crystallography

2.2.1. Single crystal diffraction

Single crystals were mounted on glass fibers for X-ray diffraction analysis. All measurements were performed on diffractometers equipped with a graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. For measurements performed on a Rigaku Scxmini CCD or a Rigaku Mercury2 CCD diffractometer, intensity data were collected in the range of $2.00 < \theta < 30.00^{\circ}$ with an ω scan mode and reduced by software CrystalClear [41]. For measurements performed on a Rigaku AFC7R diffractometer, intensity data were collected in the range of $2.00 < \theta < 30.00^{\circ}$ with an $\omega - 2\theta$ scan mode and corrected for Lorentz-polarization as well as for empirical absorption by the ψ -scan technique, the collected intensity data were reduced by CrystalStructure [42].

The structures were solved by direct methods with program SHELXS-97 [43] and refined by full-matrix least-squares techniques using program SHELXL-97 [44] in the WinGX system [45]. The final structures were examined for additional symmetry with ADDSYM/PLATON [46]. No change of space group was suggested.

^{*} Corresponding author. E-mail address: gcguo@fjirsm.ac.cn (G.-C. Guo).

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.11.024

Table 1 Reaction conditions for targets.

Starting materials (mmol)	Reaction temperature × time (precursor preparation)	Target
Y:SrS:Sn:S 0.200:0.300:0.300:0.901	$1000^\circ\text{C}\times120h$	" $Ca_3Y_2Sn_3S_{12}$ " (a)
La:CaS:Sn:S 0.100:0.150:0.150:0.452	$1000^\circ C \times 120h$	"Ca ₃ La ₂ Sn ₃ S ₁₂ " (b)
La ₂ S ₃ :CaS:Sn:S 0.100:0.200:0.300:0.605	$1000^\circ C \times 110h$	"Ca ₃ La ₂ Sn ₃ S ₁₂ " (c)
Er ₂ S ₃ :CaS:SnS ₂ 0.354:0.531:0.708	$1000^\circ C \times 316h$	"Ca ₃ Er ₄ Sn ₄ S ₁₇ " (d)
Er ₂ S ₃ :CaS:Sn:S 0.710:1.070:1.420:2.844	$950^\circ C \times 120h$	"Ca ₃ Er ₄ Sn ₄ S ₁₇ " (e)

Additional crystallographic details are given in Table 3, the positional coordinates and isotropic equivalent thermal parameters are listed in Table 4, and the bond distances are given in Table 5.

Further details of the crystal structure investigations can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-423505 for $Sr_2Y_{2.67}Sn_3S_{12}$, CSD-423506 for $Ca_3La_2Sn_3S_{12}$, CSD-423507 for $Ca_3Er_2Sn_3S_{12}$.

2.2.2. X-ray powder diffraction

The powder diffraction pattern Ca₃La₂Sn₃S₁₂ was recorded on a PANalytical X'Pert Pro diffractometer at 40 kV and 40 mA, using germanium-monochromatized Cu-K α radiation (λ = 1.54057 Å). The observed powder pattern was in good agreement with that simulated pattern based on the single-crystal structure refinement (Fig. 1).

Fig. 1. X-ray diffraction pattern of Ca₃La₂Sn₃S₁₂.

2.3. EDX analyses

Semi-quantitative energy dispersive analysis by X-ray (EDX) were performed with an EDX-equipped Hitachi S-3500 SEM spectrometer on many selected crystals, as well as some crystals which had been measured by X-ray single diffraction. The measurements confirmed the presence of AE (AE = Ca, Sr), RE (RE = La, Er, Y), Sn, and S.

Table 2

Crystal growth conditions and unit cells (in the hexagonal system) for Sr₂Y_{2.67}Sn₃S₁₂, Ca₃La₂Sn₃S₁₂, and Ca₃Er₂Sn₃S₁₂.

Precursor	Flux	Heating profile	Crystal	Unit cell	Unit cell	
				a (Å)	<i>c</i> (Å)	
"Ca ₃ Y ₂ Sn ₃ S ₁₂ " (a) 0.336 g	KBr 2.460 g	30–600 °C/9 h 600–600 °C/15 h 600–850 °C/4.5 h 850–850 °C/120 h 850–700 °C/50 h 700–860 °C/3 h 860–560 °C/150 h Power switched off	1	11.6001(67)	3.9480(30)	Sr ₂ Y _{2.67} Sn ₃ S ₁₂
"Ca ₃ La ₂ Sn ₃ S ₁₂ " (b) 0.298 g	KBr 2.920 g	60–900°C/60 h 900–900°C/240 h 900–630°C/90 h 630–360°C/90 h Power switched off	2 3 4	11.6060(16) 11.5988(7) 11.5997(6)	3.9474(8) 3.9414(4) 3.9407(4)	Ca3La2Sn3S12 Ca3La2Sn3S12 Ca3La2Sn3S12 Ca3La2Sn3S12
"Ca ₃ La ₂ Sn ₃ S ₁₂ " (c) 0.880 g	KBr 2.148g	30–600 °C/9 h 600–600 °C/15 h 600–850 °C/4.5 h 850–850 °C/120 h 850–700 °C/50 h 700–860 °C/3 h 860–560 °C/150 h Power switched off	5 6 7	11.5878(8) 11.5954(19) 11.5905(7)	3.9487(6) 3.9480(8) 3.9354(4)	Ca3La2Sn3S12 Ca3La2Sn3S12 Ca3La2Sn3S12 Ca3La2Sn3S12
"Ca ₃ Er ₄ Sn ₄ S ₁₇ " (d) 0.256 g	CaS 0.004 g + KBr 2.208 g	30–850°C/20 h 850–850°C/216 h 850–700°C/45 h 700–860°C/0.5 h 860–600°C/144 h 600–600°C/15 h Power switched off	8	11.4651(11)	3.8675(8)	Ca3Er2Sn3S12
"Ca ₃ Er ₄ Sn ₄ S ₁₇ " (e) 0.324 g	CaS 0.007 g + KBr 1.872 g	30–600 °C/20 h 600–600 °C/15 h 600–850 °C/4.5 h 850–850 °C/240 h 850–700 °C/50 h 700–860 °C/3 h 860–560 °C/150 h Power switched off	9	11.448(3)	3.8780(11)	Ca3Er2Sn3S12

Table 3

Experimental details for $Sr_2Y_{2.67}Sn_3S_{12}$ 1, $Ca_3La_2Sn_3S_{12}$ 4, and $Ca_3Er_2Sn_3S_{12}$ 9.

Empirical formula	Sr ₂ Y _{2 67} Sn ₂ S ₁₂ 1	$Ca_2 La_2 Sn_2 S_{12} 4$	CasErsSnsSis 9
E	1153 42	1138.85	1205 26
Crystal color and shape	Black, column	Black, column	Black, needle
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$	$0.2 \times 0.2 \times 0.2$	$0.30 \times 0.05 \times 0.04$
Diffractometer	Rigaku Scxmini CCD	Rigaku Mercury2 CCD	Rigaku AFC7R
Crystal system/space group	Hexagonal/P-62m	Hexagonal/P-62m	Hexagonal/P-62m
a (Å)	11.600(7)	11.5997(6)	11.448(3)
<i>c</i> (Å)	3.948(3)	3.9407(4)	3.8780(11)
V (Å ³), Z	460.1(5), 1	459.20(6), 1	440.2(2), 1
$D_{\rm c}$ (g/cm ³)	4.163	4.118	4.510
μ (Mo-K α) (mm ⁻¹)	19.409	10.754	15.900
θ range (°)	2.03-27.46	3.51-27.47	2.05-29.98
Reflections collected/unique/R _{int}	3667/435/0.0405	3426/431/0.0410	796/518/0.0928
Data/restraints/parameters	435/0/26	431/2/30	518/0/26
GOOF on F ²	1.162	1.126	1.042
Final R indices ^a ($I > 2\sigma(I)$)	$R_1 = 0.0341$, $wR_2 = 0.0802$	$R_1 = 0.0367, wR_2 = 0.0984$	$R_1 = 0.0402$, wR2 = 0.0990
R indices (all data)	$R_1 = 0.0388$, $wR_2 = 0.0865$	$R_1 = 0.0378$, $wR_2 = 0.0992$	$R_1 = 0.0444$, $wR_2 = 0.1012$
Extinction efficient	0.0113(15)	0.0017(10)	0.0057(11)
Flack x	0.01(3)	0.00(9)	-0.02(4)
Largest diff. peak/hole (e/Å ³)	2.617/-0.852	2.473/-1.360	1.727/-1.925

^a $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR = (\Sigma (w(F_0^2) - F_c^2)^2) / \Sigma (w(F_0^2)^2))^{1/2}.$

Table 4

Positional and thermal parameters with ESD for $Sr_2Y_{2.67}Sn_3S_{12}$ 1, $Ca_3La_2Sn_3S_{12}$ 4, and $Ca_3Er_2Sn_3S_{12}$ 9.

Atom	Wyckoff site	Site occupancy	x	у	Z	Ueq (Å ²)
Sr ₂ Y _{2.67} Sn ₃ S ₁₂ 1						
Y	3f	0.89 ^a	0.2767(2)	0	0	0.020(1)
Sr	2 <i>c</i>	1	1/3	2/3	0	0.019(1)
Sn	3g	1	0.6695(2)	0	1/2	0.018(1)
S(1)	6k	1	0.5611(3)	0.7504(3)	1/2	0.019(1)
S(2)	3f	1	0.5274(4)	0	0	0.019(1)
S(3)	3f	1	0.8234(6)	0	0	0.039(2)
$Ca_3La_2Sn_3S_{12}$ 4						
Ca(1)/La(1)	3f	0.71(1)/0.29(1)	0.2752(2)	0	0	0.026(1)
Ca(2)/La(2)	2c	0.16(2)/0.84(2)	1/3	2/3	0	0.015(1)
Sn	3g	1	0.6691(1)	0	1/2	0.020(1)
S(1)	6k	1	0.5504(3)	0.7483(3)	1/2	0.014(1)
S(2)	3f	1	0.5275(4)	0	0	0.023(1)
S(3)	3f	1	0.8194(6)	0	0	0.038(1)
Ca ₃ Er ₂ Sn ₃ S ₁₂ 9						
Er/Ca(1)	3f	0.67/0.33 ^a	0.2841(1)	0	0	0.013(1)
Ca(2)	2 <i>c</i>	1	1/3	2/3	0	0.012(1)
Sn	3 g	1	0.6709(1)	0	1/2	0.015(1)
S(1)	6k	1	0.5568(4)	0.7474(4)	1/2	0.013(1)
S(2)	3f	1	0.5271(5)	0	0	0.022(1)
S(3)	3f	1	0.8252(5)	0	0	0.023(1)

^a Fixed.

Table 5

2.4. UV-vis diffuse reflectance spectroscopy

The optical diffuse reflectance spectrum of powdered Ca₃La₂Sn₃S₁₂ sample was measured at room temperature using a Perkin-Elmer Lambda 900 UV-vis spectrophotometer equipped with an integrating sphere attachment and BaSO₄ as reference. The absorption spectrum was calculated from the reflection spectrum via the Kubelka–Munk function: $\alpha/S = (1-R)^2/2R$, in which α is the absorption coefficient, *S* is the scattering coefficient, and *R* is the reflectance [47].

Bond lengths (Å) for $Sr_2Y_{2.67}Sn_3S_{12}$ **1**, $Ca_3La_2Sn_3S_{12}$ **4**, and $Ca_3Er_2Sn_3S_{12}$ **9**.

3. Results and discussion

3.1. Structure determination

The structures of $Sr_2Y_{2.67}Sn_3S_{12}$, $(Ca/La)_2(Ca/La)_3Sn_3S_{12}$, and $Ca_2(Er_2Ca)Sn_3S_{12}$ were solved by direct methods and difference Fourier synthesis. The structure refinements showed that the Y

Polyhedron	Bond	Sr ₂ Y _{2.67} Sn ₃ S ₁₂ 1	Ca ₃ La ₂ Sn ₃ S ₁₂ 4	$Ca_3Er_2Sn_3S_{12}$ 9
RES ₇	RE-S(3) (×2)	2.815(3)	2.809(2)	2.8414(14)
	$RE-S(1)(\times 4)$	2.851(3)	2.932(2)	2.804(3)
	RE-S(2) (×1)	2.908(6)	2.927(5)	2.782(6)
SnS ₆	$Sn-S(1)(\times 2)$	2.515(3)	2.530(3)	2.508(4)
	$Sn-S(2)(\times 2)$	2.572(4)	2.565(3)	2.544(4)
	Sn-S(3) (×2)	2.662(5)	2.631(4)	2.623(4)
AES ₆₊₃	AE-S(1)(×6)	3.042(3)	2.956(2)	2.965(3)
	AE-S(2) (×3)	3.364(2)	3.3638(5)	3.3193(10)

Fig. 2. Coordination geometry of SnS₆, YS₇, and SrS₆₊₃.

atom occupies the 3*f* sites only, the Sr atom the 2*c* sites for crystal **1**. The refined occupancy of Y at the 3*f* site indicated the $Sr_2Y_{2.87(27)}Sn_3S_{12}$ formula for crystal **1**, the site occupancy was then fixed at 0.89 for the charge/occupancy balance. The structure refinements showed mixed Ca/La occupations on both the 3*f* and 2*c* positions for crystal **2**, **3**, **4**, **5**, **6**, and **7**, because of the size similarity of Ca²⁺ to La³⁺ [48]. The formula $(Ca/La)_2^{2c}(Ca/La)_3^{3f}Sn_3S_{12}$ can be rounded off as Ca₃La₂Sn₃S₁₂ according to charge neutrality. For crystal **8** and **9**, the structure refinements showed that the 2*c* positions were occupied by the Ca atoms only, while the 3*f* sites by both Er and Ca atoms. The formula $Ca_2^{2c}(Er_2Ca)^{3f}Sn_3S_{12}$ (=Ca₃Er₂Sn₃S₁₂) can be deduced for the charge/occupancy balance for crystals **8** and **9**.

3.2. Structure description

Sr₂Y_{2.67}Sn₃S₁₂ **1**, Ca₃La₂Sn₃S₁₂ **4**, and Ca₃Er₂Sn₃S₁₂ **9** are isotypic with Eu₅Zr₃S₁₂ **[49]**. Sr₂Y_{2.67}Sn₃S₁₂ **1**, Ca₃La₂Sn₃S₁₂ **4**, and Ca₃Er₂Sn₃S₁₂ **9** each contains three types of building blocks in their structures: octahedral SnS₆, mono-capped trigonal prismatic RES₇ (RE = Y, Ca/La, Er/Ca), and trigonal prismatic AES₆ (AE = Sr, Ca/La, Ca). The Sn atom is coordinated by $2 \times S(1)$, $2 \times S(2)$ and $2 \times S(3)$ atoms in a octahedral geometry (Fig. 2a); the Y atom is surrounded by 7 S ($4 \times S(1)$, $1 \times S(2)$, and $2 \times S(3)$) atoms forming a mono-capped trigonal prism (Fig. 2b). The Sr atom is coordinated to form a trigonal prism by $6 \times S(1)$ atoms, or is in a three-capped prismatic geometry if three distant S(2) atoms (at 3.364(2)Å) are included (Fig. 2c). The SnS₆ octahedra are con-

densed into a edge-sharing ∞ [SnS(1)₂S(2)_{2/2}S(3)_{2/2}] chain along the *c* axis (Fig. 3a), while the YS₇ prisms each share opposite [S(1)-

S(1)] edges along the *c* direction forming ${}^{\infty}$ [YS(1)_{4/2}S(2)S(3)₂] 1

chains (Fig. 3b). Every three neighboring $^{\infty}$ [YS(1)_{4/2}S(2)S(3)₂] chains are inter-connected by edge-sharing (S(3)-S(3)-S(3)-S(3)) 1

forming one $^{\infty}$ [Y₃S(1)_{12/2}S(2)₃S(3)₃] trimer-chain; these trimerchains are further connected into a 3-dimensional framework by the Sn atoms via S(1), S(2), and S(3), with Sr atoms filling in the channels along the *c* direction (Fig. 4).

For octahedrally coordinated Sn atoms, all the Sn-S distances in $Sr_2Y_{2.67}Sn_3S_{12}$ **1** [2.515(3) – 2.662(5)Å], $Ca_3La_2Sn_3S_{12}$ **4** [2.530(3) – 2.631(4)Å], and $Ca_3Er_2Sn_3S_{12}$ **9** [2.508(4) – 2.623(4)Å] are in good agreement with those (2.510–2.720Å) in Na_2SnS_3 [50]. For

7-coordinated Y, (Ca/La), and (Er/Ca) atoms, the Y-S distances varying from 2.676(3) to 2.813(5)Å, are consistent with those (2.655–2.894Å) in Pb₃Y₂Sn₃S₁₂ [51]; the (Ca/La)-S distances range from 2.809(2) to 2.932(2)Å, comparable with those La-S distances in LaTmS₃ (2.885–3.051Å) [52] and in LaYbS₃ (2.892–3.062Å) [52]; the (Er/Ca)-S distances (2.782(6) – 2.8414(14)Å) fall in the range of 2.664(2) – 3.010(2)Å in Er₃Ge_{0.330(10)}GeS₇ [53]. For 6-coordinated Sr, (Ca/La), and Ca atoms, the Sr-S contact of 3.042(3)Å in Sr₂Y_{2.67}Sn₃S₁₂ **1** is very near the sum of ionic radii (3.02Å) [48]; the (Ca/La)-S distance of 2.956(2)Å in Ca₃La₂Sn₃S₁₂ **4** and the Ca-S distance of 2.965(3)Å in Ca₃Er₂Sn₃S₁₂ **9**, are slightly longer than that (Ca/Eu)-S (2.92Å) in CaEuS₂ [11,12].

Fig. 3. The ∞ [SnS(1)₂S(2)_{2/2}S(3)_{2/2}] chain, and the ∞ [YS(1)_{4/2}S(2)S(3)₂] chain.

Fig. 4. View of Sr₂Y_{2.67}Sn₃S₁₂ along the *c* direction.

Fig. 5. Optical absorption spectrum of $Ca_3La_2Sn_3S_{12}$ transformed from diffuse reflectance data.

3.3. Experimental band gap of $Ca_3La_2Sn_3S_{12}$

A band gap of 1.45 eV was deduced from the diffuse reflectance spectrum of $Ca_3La_2Sn_3S_{12}$ (Fig. 5).

4. Conclusions

Three new quaternary sulfides, $Sr_2Y_{2.67}Sn_3S_{12}$, $Ca_3La_2Sn_3S_{12}$, and $Ca_3Er_2Sn_3S_{12}$, have been synthesized in the AE-RE-Sn-S (AE = alkaline-earth, RE = rare earth) system for the first time. They crystallize in the *P*-62*m* space group (no. 189) and are isostructural with Eu₅Zr₃S₁₂. The optical band gap was determined to be 1.45 eV for Ca₃La₂Sn₃S₁₂ with the use of the diffuse reflectance spectrum measurement.

Acknowledgements

This work was supported by the NSF of China (90922035, 21003126), the Key Project from the CAS (KJCX2-YW-H01, KJCX2-EW-H03), the NSF of Fujian Province (A0420002), and the Program of the Industry Science and Technology of Fujian province (2010H0022).

References

- J. Flahaut, in: K.A. Gschneidner Jr., L.R. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare-earth, 4, North-Holland Publishing Company, Amsterdam/New York/Oxford, 1979, pp. 1–88.
- [2] P. Wu, J.A. Ibers, J. Alloys Compd. 229 (1995) 206-215.
- [3] G. Blasse, Mater. Chem. Phys. 31 (1992) 3.
- [4] T.E. Peters, J.A. Baglio, J. Electrochem. Soc. 119 (1972) 230–237.
- [5] R. Ibanez, A. Garcia, C. Fouassier, P. Hagenmüller, J. Solid State Chem. 53 (1984) 406–414.
- [6] M. Patrie, J. Flahaut, L. Domange, Comp. Rend. Hebd. Séances Acad. Sci. 258 (1964) 2585–2586.
- [7] M. Guittard, J. Flahaut, C. Souleau, H. Farsam, Comp. Rend. Hebd. Séances Acad. Sci. 259 (1964) 2847-2849.
- [8] S.M. Golabi, J. Flahaut, L. Domange, Rev. Hautes. Temp. Refract. (Paris) 2 (1965) 203–273.
- [9] M.P. Pardo, J. Flahaut, Bull. Soc. Chim. Fr. 1969 (1969) 6–9.
- [10] J. Flahaut, L. Domange, M. Patrie, Bull. Soc. Chim. Fr. 1962 (1962) 2048-2054.
- [11] V.G. Bamburov, N.I. Lobachevskaya, Inorg. Mater. (USSR) 6 (1970) 1803-1804
- (see Izv. Akad. Nauk, Neorg. Mater.).
 [12] O. Gorochov, V.V. Tien, N.H. Dung, E. Barthelemy, J. Flahaut, Coll. Int. Centre Natl. Rech. Sci. 180 (1970) 157–168.
- [13] N. Rodier, V. Tien, Comp. Rend. Hebd. Séances Acad. Sci. C 284 (1977) 909–911.
- [14] A. Jayaraman, P.D. Dernier, L.D. Longinotti, Valence Instabilities and Related Narrow-Band Phenomena. Proceedings of International Conference, 1976, vol. 1077, 1977, pp. 61–70.
- [15] A. Jayaraman, R.G. Maines, Phys. Rev B19 (1979) 4154-4161.
- [16] O.V. Andreev, T.M. Kislovskaya, A.V. Kertman, Zh. Neorg. Khim. 35 (1990) 1280–1284.
- [17] O.V. Andreev, T.M. Kislovskaya, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 34 (1991) 119–121.
- [18] J.D. Carpenter, S.-J. Hwu, J. Solid State Chem. 97 (1992) 332-339.
- [19] Z. El Fadli, P. Lemoine, A. Tomas, F. Bozon-Verduraz, M. Guittard, Mater. Res. Bull. 30 (1995) 671–678.
- [20] P.-Y. Li, K.G. Lange, M. Andratschke, K.J. Range, Z. Kristallogr. 211 (1996) 814.
- [21] H. Choi, C.-H. Kim, C.-H. Pyun, S.-J. Kim, J. Solid State Chem. 131 (1997) 101-107.

- [22] H.L. Yakel jr, E. Banks, R. Ward, J. Electrochem. Soc. 96 (1949) 304-309.
- [23] A. Chatterjee, A.K. Singh, A. Jayaraman, Phys. Rev. B 6 (1972) 2285-2291.
- [24] U. Köbler, I. Apfelstedt, K. Fischer, W. Zinn, E. Scheer, J. Wasnitza, H.V. Loehneysen, D. Brueckel, Z. Phys. B 92 (1993) 475–487.
- [25] G. Crecelius, H. Maletta, H. Pink, W. Zinn, J. Magn. Magn. Mater. 5 (1977) 150-155.
- [26] K. Westerholt, H. Bach, Phys. Rev. B 31 (1985) 7151-7159.
- [27] O.V. Andreev, A.V. Kertman, V.G. Bamburov, Zh. Neorg. Khim. 36 (1991) 253–256.
- [28] H. Laronze, A. Demourgues, A. Tressaud, L. Lozano, J. Grannec, F. Guillen, P. Macaudiere, P. Maestro, J. Alloys Compd. 275 (1998) 113–117.
- [29] O.V. Andreev, A.V. Kertman, V.G. Bamburov, Zh. Neorg. Khim. 36 (1991) 2623–2627.
- [30] O.V. Andreev, A.V. Kertman, V.G. Bamburov, Zh. Neorg. Khim. 36 (1991) 1472-1476.
- [31] J.D. Carpenter, S.-J. Hwu, Acta Crystallogr. C 48 (1992) 1164-1167.
- [32] A.A. Narducci, Y.-T. Yang, M.A. Digman, A.B. Sipes, J.A. Ibers, J. Alloys Compd. 303 (2000) 432–439.
- [33] S. Jaulmes, Acta Crystallogr. B30 (1974) 2283-2285.
- [34] S. Jaulmes, M. Julien-Pouzol, Acta Crystallogr. B33 (1977) 1191-1193.
- [35] S. Jaulmes, M. Julien-Pouzol, Acta Crystallogr. B33 (1977) 3898-3901.
- [36] M. Julien-Pouzol, S. Jaulmes, Acta Crystallogr. B35 (1979) 2672-2674.
- [37] S. Jaulmes, M. Julien-Pouzol, P. Laruelle, M. Guittard, Acta Crystallogr. B38 (1982) 79–82.
- [38] C.R.I.V. Evenson, P.K. Dorhout, Z. Anorg. Allg. Chem. 627 (2001) 2178-2182.

- [39] R. Pocha, M. Tampier, R.D. Hoffmann, B.D. Mosel, R. Poettgen, D. Johrendt, Z. Anorg. Allg. Chem. 629 (2003) 1379–1384.
- [40] P. Jacubcova, D. Johrendt, C.P. Sebastian, S. Rayaprol, R. Pötgen, Z. Naturforsch B62 (2007) 5–14.
- [41] CrystalClear, Version 1.3.6, Rigaku/MSC, The Woodlands, TX, USA, 2004.
- [42] CrystalStructure, Version 3.6.0, Rigaku/MSC, The Woodlands, TX, USA, 2004.
- [43] G.M. Sheldrick, SHELXS-97, Program for Structure Solution, University of Götingen, Germany, 1997.
- [44] G.M. Sheldrick, SHELXL-97, Program for Structure Refinement, University of Götingen, Germany, 1997.
- [45] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.
- [46] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2005.
- [47] G. Kotüm, Reflectance Spectroscopy, Spring-Verlag, New York, 1969.
- [48] R.D. Shannon, Acta Crystallogr. A32 (1976) 751-767.
- [49] P. Jakubcova, F.M. Schappacher, R. Pötgen, D. Johrendt, Z. Anorg. Allg. Chem. 635 (2009) 759-763.
- [50] W. Mark, O. Lindqvist, J.C. Jumas, E. Philippot, Acta Crystallogr. 30B (1974) 2620–2628.
- [51] O.V. Marchuk, I.P. Ruda, L.D. Gulay, I.D. Olekseyuk, Pol. J. Chem. 81 (2007) 425-432.
- [52] G.B. Jin, E.S. Choi, R.P. Guertin, J.S. Brooks, T.H. Bray, C.H. Booth, T.E. Albrecht-Schmitt, Chem. Mater 19 (2007) 567–574.
- [53] H.-Y. Zeng, F.-K. Zheng, G.-C. Guo, J.-S. Huang, J. Alloys Compd. 458 (2008) 123-129.